PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

43000667 - Modelos Constitutivos De Materiales

PLAN DE ESTUDIOS

04AP - Master Universitario Ingenieria De Estructuras, Cimentaciones Y Materiales

CURSO ACADÉMICO Y SEMESTRE

2024/25 - Segundo semestre

Índice

Guía de Aprendizaje

1. Datos descriptivos	
2. Profesorado	
3. Competencias y resultados de aprendizaje	2
4. Descripción de la asignatura y temario	4
5. Cronograma	
6. Actividades y criterios de evaluación	9
7. Recursos didácticos	12
8. Otra información	13

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	43000667 - Modelos Constitutivos de Materiales
No de créditos	3 ECTS
Carácter	Optativa
Curso	Primer curso
Semestre	Segundo semestre
Período de impartición	Febrero-Junio
Idioma de impartición	Castellano
Titulación	04AP - Master Universitario Ingenieria de Estructuras, Cimentaciones y Materiales
Centro responsable de la	04 - Escuela Tecnica Superior De Ingenieros De Caminos, Canales Y
titulación	Puertos
Curso académico	2024-25

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Mihaela lordachescu (Coordinador/a)	Despacho	mihaela.iordachescu@upm.e s	L - 16:00 - 20:00 M - 13:00 - 14:00 M - 18:00 - 19:00
Maricely De Abreu Rodrigues	Ciencia Mater	m.deabreu@upm.es	M - 08:00 - 11:00 X - 08:00 - 11:00 J - 08:00 - 11:00

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias

- C11 [ligada al Itinerario en Simulación y modelización de estructuras, cimentaciones y materiales]: Capacidad para la investigación de alta especialización o para la predoctoral en simulación y modelización de estructuras, cimentaciones y materiales. TIPO: Competencias
- C3 [Proviene de las competencias CE3 y CE9]: Capacidad para la resolución de problemas ligados al diseño, construcción, conservación y evaluación técnica de infraestructuras que requieran la aplicación de las propiedades mecánicas y de fractura de los materiales estructurales TIPO: Competencias
- C4 [Proviene de las competencias CE1 y CE4]: Capacidad para el análisis del comportamiento mecánico y la durabilidad de estructuras de ingeniería civil y edificación, sus materiales y sus cimentaciones TIPO: Competencias
- C5 [Proviene de las competencias CG1 y CE5]: Capacidad para la participación en actividades de I+D+i mediante la utilización de recursos de modelización predictiva mediante métodos numéricos TIPO: Competencias
- C7 [Proviene de la competencia CG2]: Capacidad para la participación en actividades de I+D+i mediante la utilización de recursos de modelización predictiva mediante el uso de técnicas de programación informática TIPO: Competencias
- C8 [Proviene de las competencias CE1, CE5 y CE8]: Capacidad para la participación en actividades de I+D+i mediante la utilización de recursos de modelización predictiva mediante técnicas de análisis de fiabilidad y seguridad TIPO: Competencias
- C9 [Proviene de las competencias CE9-CE16]: Capacidad para la investigación predoctoral en diseño de estructuras y sus cimentaciones y materiales, simulación y modelización de estructuras, cimentaciones y materiales, Mantenimiento y conservación de estructuras, sus cimentaciones y sus materiales TIPO: Competencias
- K1 [Proviene parcialmente de la competencia CG1]: Aplica e integra conocimientos científicos avanzados de tipo mecánico, físico y matemático en contextos de investigación científica y tecnológica en el ámbito de las estructuras, las cimentaciones y los materiales TIPO: Conocimientos o contenidos
- K2 [Proviene de la competencia CG2]: Identifica los componentes determinantes para ejercer las funciones de diseño, construcción, conservación y evaluación técnica de estructuras, cimentaciones y materiales, mediante el uso de normativa y documentación científica nacional e internacional. TIPO: Conocimientos o contenidos

- K3 [Proviene de la competencia CG3]: Identifica y explica los aspectos determinantes para diseñar, analizar e interpretar experimentos relevantes, así como usar varios lenguajes de computación, programas de análisis y simulación, y modelos avanzados en ingeniería estructural, geotécnica y de materiales estructurales. TIPO: Conocimientos o contenidos
- Sk3 [Proviene de la competencia CB8]: Integra los conocimientos adquiridos para formular juicios e introducir innovaciones tecnológicas a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios TIPO: Habilidades o destrezas
- Sk4 [Proviene de la competencia CB10]: Demuestra que puede adquirir conocimientos complejos y continuar estudiando de un modo que habrá de ser en gran medida auto-dirigido o autónomo TIPO: Habilidades o destrezas
- Sk5 [Proviene de la competencia CG4]: Utiliza la lengua inglesa para expresar conocimiento técnico y científico, de forma oral y escrita. TIPO: Habilidades o destrezas
- Sk6 [Proviene de la competencia CG5]: Aplica los servicios de comunicación y de obtención de información para su transformación en conocimiento aplicable al ejercicio de las competencias en ingeniería de estructuras, cimentaciones y materiales. TIPO: Habilidades o destrezas
- Sk7 [Proviene de las competencias CB9 y CT1]: Prepara y presenta comunicaciones orales, escritas y gráficas, estructurada y argumentadamente, y es capaz de discutirlas con otras personas. TIPO: Habilidades o destrezas
- Sk8 [Proviene de la competencia CT2]: Planifica, organiza y dirige los esfuerzos de un equipo de personas TIPO: Habilidades o destrezas
- Sk9 [Proviene de la competencia CT3]: Aplica los estándares de deontología en la investigación avanzada TIPO: Habilidades o destrezas

3.2. Resultados del aprendizaje

- RA20 conocer los fundamentos físicos de los comportamientos macroscópicos
- RA14 Resuelve problemas de proyecto, construcción, conservación y evaluación técnica de infraestructuras que se planteen en contextos globalizados e involucren aspectos de comportamiento no lineal de estructuras.
- RA13 Utiliza con eficacia recursos de información y comunicación

RA1 - RA6

- RA11 Utiliza con eficacia, autonomía y polivalencia recursos de modelización predictiva en la temática de la materia
- RA22 familiarizarse con la metodología científica de las disciplinas en que se apoya la asignatura
- RA12 "Presenta comunicaciones orales, escritas y gráficas, estructurada y argumentadamente, en lengua española e inglesa"

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

En caso de necesidad por razones sanitarias, las actividades docentes y de evaluación pasarán a tener lugar en modalidad telemática.

Objetivos:

- Conocer, interpretar y aplicar los modelos teóricos que describen y cuantifican el movimiento en pequeñas deformaciones y las fuerzas internas en los materiales estructurales;
- Conocer, interpretar y aplicar los modelos teóricos que describen las ecuaciones constitutivas y las simetrías de los materiales hookeanos, viscoelásticos y elastoplásticos;
- Aplicar conjuntamente las ecuaciones generales de la Mecánica de Medios Continuos y las ecuaciones constitutivas al análisis estructural de sólidos hookeanos, sólidos viscoelásticos y sólidos elástoplásticos.

4.2. Temario de la asignatura

- 1. Tema I. El medio continuo como sistema mecánico
 - 1.1. Introducción. Materiales y medios continuos
 - 1.2. Fuerzas exteriores y interiores en medios continuos
 - 1.3. Teoremas de la Mecánica para medios continuos
- 2. Tensiones en medios continuos I
 - 2.1. Tensiones. El tensor de tensiones de Cauchy
 - 2.2. Tensiones principales
 - 2.3. Estado tensional uniaxial (tracción o compresión simple)
 - 2.4. Estados tensionales biaxial, triaxial, cilíndrico y esférico
 - 2.5. Estado cortante puro
- 3. Tensiones en medios continuos II
 - 3.1. Círculo de Mohr
 - 3.2. Tensiones estáticamente determinadas
 - 3.3. Simetría, axilsimetría de tensiones
 - 3.4. Simetría esférica de tensiones
- 4. Tensiones en sólidos laminares (Fluidos)
 - 4.1. Tensiones en sólidos laminares
 - 4.2. Tensiones en láminas axilsimétricas uniformes
 - 4.3. Tensiones en láminas esféricas uniformes
 - 4.4. Tensiones en tubos de pared delgada
- 5. Deformaciones en medios continuos (Pequeñas deformaciones Solidos)
 - 5.1. Deformaciones en un punto material
 - 5.2. Régimen de pequeñas deformaciones
 - 5.3. El tensor de (pequeñas) deformaciones
 - 5.4. Círculo de Mohr de deformaciones
- 6. Ecuaciones constitutivas del material hookeano

- 6.1. Propiedades del material hookeano: pequeñas deformaciones, elasticidad, linealidad e isotropía
- 6.2. Leyes de Hooke. Constantes del material hookeano
- 6.3. Ecuaciones de Lamé
- 7. El material viscoelástico de Bolztmann
 - 7.1. Propiedades del material viscoelástico de Bolztmann ? pequeñas deformaciones, linealidad e isotropía
 - 7.2. Procesos de fluencia y de relajación
 - 7.3. El material viscoelástico de Bolztmann frente al material hookeano
 - 7.4. Ecuaciones constitutivas del material viscoelástico de Bolztmann
- 8. Sólidos elastoplásticos isótropos
 - 8.1. Comportamiento del sólido elastoplástico isótropo bajo tensión uniaxial
 - 8.2. Criterios de plastificación
 - 8.3. Ecuaciones constitutivas del sólido elastoplástico isótropo
 - 8.4. Ecuaciones de PrandIt-Reuss

5. Cronograma

5.1. Cronograma de la asignatura *

Sem	Actividad tipo 1	Actividad tipo 2	Tele-enseñanza	Actividades de evaluación
1	Tema 1 Duración: 02:10 LM: Actividad del tipo Lección Magistral			
2	Tema 2 Duración: 02:10 LM: Actividad del tipo Lección Magistral			
3		Temas 1-2 Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
4	Temas 3-4 Duración: 02:10 LM: Actividad del tipo Lección Magistral			
5		Temas 3-4 Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
6				Temas 1 - 4 EX: Técnica del tipo Examen Escrito Evaluación Progresiva Presencial Duración: 02:10
7	Tema 5 Duración: 02:10 LM: Actividad del tipo Lección Magistral			Temas 1 - 4 Tl: Técnica del tipo Trabajo Individual Evaluación Progresiva No presencial Duración: 02:10
8		Tema 5 Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
9	Tema 6 Duración: 02:10 LM: Actividad del tipo Lección Magistral			
10	Tema 7 Duración: 02:10 LM: Actividad del tipo Lección Magistral			
11		Temas 6-7 Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
12	Tema 8 Duración: 01:10 LM: Actividad del tipo Lección Magistral	Practica lab Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		

13	Temas 9-10 Duración: 01:00 PR: Actividad del tipo Clase de Problemas	Practica lab Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio	
14		Temas 9-10 Duración: 02:00 PR: Actividad del tipo Clase de Problemas	
15			Temas 5-8 EX: Técnica del tipo Examen Escrito Evaluación Progresiva Presencial Duración: 02:00
16			Temas 1 - 8 EX: Técnica del tipo Examen Escrito Evaluación Global Presencial Duración: 02:10
17			

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
6	Temas 1 - 4	EX: Técnica del tipo Examen Escrito	Presencial	02:10	35%	4/10	K3 C9 Sk6 Sk3 C5 C7 K2 Sk5 C11 Sk9 C4 C8 Sk4 K1 Sk7 Sk8
7	Temas 1 - 4	TI: Técnica del tipo Trabajo Individual	No Presencial	02:10	25%	0/10	C9 Sk6 K3 Sk3 C5 C7 K2 Sk5 C11 Sk9 C4 C8 Sk4 K1 Sk7 Sk8
		EX: Técnica del tipo					C9 Sk6 K3 Sk3 C5 C7 K2 Sk5

15	Temas 5-8	Examen	Presencial	02:00	40%	5 / 10	C11
		Escrito					Sk9
							C4
							C8
							Sk4
							K1
							Sk7
							Sk8

6.1.2. Prueba evaluación global

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
16	Temas 1 - 8	EX: Técnica del tipo Examen Escrito	Presencial	02:10	100%	5/10	C9 Sk6 K3 Sk3 C5 C7 K2 Sk5 C11 Sk9 C4 C8 Sk4 K1 Sk7 Sk8

6.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

6.2. Criterios de evaluación

Evaluación continua (examen escrito):

PE1. Ejercicios de clase Temas 1-4 (25%)

Descripción: Asistencia a clases (on-line o presencial) y resolución de problemas propuestos a través del Aula Virtual (MOODLE).

Criterios de calificación: El profesor otorgará una puntuación entre 0 y 2,5 puntos por participación y calidad en la realización los problemas propuestos.

PE2. Prueba intermedia de resolución autónoma de ejercicios y problemas (Temas 1-4, peso 35%)

Descripción: A mitad del semestre, el estudiante deberá resolver individualmente y por escrito 2 problemas del tipo de los resueltos en las clases de ejercicios impartidas en ese periodo. Los alumnos que quieran mejorar la calificación obtenida podrán realizar nuevamente esta prueba a continuación de la que se describe en el apartado PE3.

Criterios de calificación. La prueba dedicada a los problemas de clase se puntuará de 0 a 3,5.

PE3. Prueba intermedia de resolución autónoma de ejercicios y problemas (Temas 5-8, peso 40%)

Descripción. Al final del semestre, el estudiante deberá resolver individualmente y por escrito 2 problemas del tipo de los resueltos en las clases de ejercicios impartidas desde la prueba intermedia (Temas 5 - 8).

Criterios de calificación. El examen final se calificará de 0 a 4,0 puntos.

Calificación final de la asignatura mediante evaluación continua : Será la suma de las puntuaciones obtenidas en PE1, PE2 y PE3.

Para superar la asignatura esta calificación deberá no ser inferior a 5.

Evaluación mediante "sólo prueba final":

Descripción. Consistirá en un examen único, con 4 problemas del tipo de los resueltos en las clases de ejercicios impartidas a lo largo del curso.

Criterios de calificación. Valoración de 0 a 10.

Calificación final de la asignatura mediante "sólo prueba final" será directamente la obtenida en el examen. Para superar la asignatura, esta calificación deberá ser igual o superior a 5.

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
V. Sánchez Gálvez (1998). Comportamiento plástico de materiales Publicaciones de la Escuela de Ingenieros de Caminos de Madrid, Madrid.	Bibliografía	Bibliografía básica
A. Valiente (2014). Comportamiento mecánico de materiales. Elasticidad y Viscoelasticidad, Gar-cía-Maroto Editores.	Bibliografía	Bibliografía básica
I. H. Shames, F. A. Cozzarelli (1998), Elastic and Inelastic Stress Analysis, Taylor & Francis	Bibliografía	Bibliografía complementaria
L. E. Malvern (1969), Introduction to the Mechanics of a Continous Medium, Prentice Hall	Bibliografía	Bibliografía complementaria
R.M. Christensen (1971), Theory of Viscoelasticity ? An Introduction, Academic Press	Bibliografía	Bibliografía complementaria
J. Salençon (2001), Handbook of Continuum Mechanics, Springer	Bibliografía	Bibliografía complementaria

K. D. Hjelmstad (2005), Fundamentals of Structural Mechanics, Springer	Bibliografía	Bibliografía complementaria
R. Hill (1998), Mathematical Theory of Plasticity, Oxford Classic Texts in the Physical Sciences	Bibliografía	Bibliografía complementaria
P. Chadwick (1999), Continuum Mechanics: Concise Theory and Problems, Dover Books on Physics	Bibliografía	Bibliografía complementaria
Área virtual de la ETSICCP. Área virtual (MOODLE).	Recursos web	

8. Otra información

8.1. Otra información sobre la asignatura

El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

Esta asignatura contribuye a los objetivos 6, 8, 9, 10, 11 de desarrollo sostenible (ODS) de la ONU a través de los resultados de aprendizaje RA 13, 20 y 21.