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Fivefold symmetry as an inhibitor to hard-sphere crystallization

Nikos Ch. Karayiannis,1 Rohit Malshe,2 Juan J. de Pablo,2 and Manuel Laso1,*

1Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politecnica de Madrid (UPM), ES-28006 Madrid, Spain
2Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Wisconsin 53706-1691, USA

(Received 2 March 2011; revised manuscript received 26 April 2011; published 16 June 2011)

Through molecular simulations we investigate the dynamics of crystallization of hard spheres of uniform size
from dense amorphous states and the role that hidden structures in an otherwise disordered medium might have
on it. It is shown that short-range order in the form of sites with fivefold symmetry acts as a powerful inhibitor
to crystal growth. Fivefold sites not only retard crystallization, but can self-assemble into organized structures
that arrest crystallization at high densities or lead to the formation of defects in a crystal. The latter effect can be
understood in terms of a random polyhedral model.
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I. INTRODUCTION

Random and ordered packings are closely related to
processes and applications in colloid science, hard and soft
materials science, engineering, biology, and mathematics.
Hard spheres represent the simplest, nontrivial model which
captures interactions based exclusively on the concept of ex-
cluded volume; as such it is amenable to analytic approaches.
Kirkwood [1] was the first to predict a hard-sphere phase
(disorder-order) transition. His predictions were soon followed
by the pioneering simulations of Alder and Wainwright [2]
and the experiments of Pusey and van Megen on concentrated
colloidal suspensions [3].

Athermal systems, consisting of hard bodies, do not incur
into energetic gains or penalties upon configurational change,
making entropy the sole driving force for phase transitions.
Entropy-driven isotropic-nematic transitions were originally
predicted by Onsager for systems of hard rods [4] and
confirmed by a series of modeling studies by Frenkel and
collaborators [5–7]. Very recently, spontaneous crystallization
has also been observed in simulations of dense packings of
hard-sphere chains, thus disproving the long-standing belief
that chain connectivity suppresses crystallization [8]. It has
now been firmly established that, given adequate simulation
time, hard-sphere packings eventually crystallize, even at
volume fractions near jamming [9,10].

Classical nucleation theory posits that crystal nuclei form
spontaneously in a metastable liquid. The system free energy
depends on two competing factors: the penalty associated
with the creation of a solid-liquid interface and the gain due
to the formation of an ordered phase with higher stability
than the amorphous material. Once a nucleus attains a critical
size, it grows continuously [11]. While spheres represent the
geometric shape with the highest volume-to-surface ratio, it
has been demonstrated that under certain conditions the shape
of the critical crystal nucleus is actually ellipsoidal, rather than
spherical [12–15].

Crystallography dictates that fivefold symmetry is incom-
patible with strict periodicity and thus with crystal structures.
Building blocks with fivefold local symmetry (“fivefolds” in
the following) may produce structures such as quasicrystals
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[16] that exhibit long-range order but no translational symme-
try [17]. Simulations using anisotropic potentials suggest that
local arrangements of sites with pentagonal symmetry are lo-
cally favored, thereby causing frustration in the crystallization
of glasses [18]. Fivefolds have also been reported to occur in
crystal phases [19] and in dense random packings [20] of hard
spheres. However, their role in the morphology and dynamics
of athermal crystals remains unknown.

In this work, based on results from extensive, event-driven
molecular dynamics (ED-MD) simulations, we show that
fivefolds play a central role as antagonists of crystallization
in very dense hard-sphere packings of uniform sphere size.

II. METHOD

Five (twelve) independent realizations (trajectories) were
collected for the large (3000) and small (1200) simulated
cells, respectively, at packing densities of ϕ = 0.56, 0.58,
0.60, and 0.61. To study the effect of system size we also
conducted simulations on systems of 54 000 spheres at
selected packing densities. In the present study, we have
used the characteristic crystallographic element (CCE)
norm [21,22] to determine the point group symmetry of the
local environment of each site. The CCE norm can sensitively
detect and discriminate between different emerging crystal
structures [22]. It also serves to accurately quantify the degree
of ordering or crystallinity, τc, as the sum of the fractions of
sites in hexagonal-close-packed (hcp) and face-centered-cubic
(fcc) local environments. Initial configurations were obtained
from Monte Carlo trajectories of freely jointed hard-sphere
chains [21] by removing all bonds and allowing a short period
for the system to relax in the absence of holonomic constraints.
All amorphous (random) configurations contained similarly
small fractions of ordered sites (either hcp- or fcc-like) and
fivefolds, uniformly and randomly dispersed throughout
the simulation cell with the initial fivefold fraction, vfiv,
increasing linearly with packing density. Clusters of ordered
sites were identified by a distance-based algorithm [23] using
a threshold of 1.1σ , where σ is the sphere diameter. Further
analysis with different radii for the cluster detection revealed
no effect on the qualitative trends described here.

III. RESULTS

In the course of the ED-MD evolution, all systems con-
sidered here exhibit consistent qualitative trends, regardless
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FIG. 1. (Color online) System snapshots as obtained from ED-MD simulations on a sample at ϕ = 0.61. Each panel shows the largest cluster
(nucleus) of ordered sites and fivefold sites as identified by the CCE norm. fcc-, hcp-like, and fivefold sites are shown in red (gray), blue (dark
gray) and green (light gray), respectively [gray, dark gray, and light gray in printed version]. (a) after 107 collisions, τc

∼= 0.077, νfiv = 0.069;
(b) after 1.08 × 108 collisions, τc

∼= 0.12, νfiv = 0.056; (c) after 2.36 × 108 collisions, τc
∼= 0.14, νfiv = 0.063; (d) after 3.30 × 108 collisions,

τc
∼= 0.27, νfiv = 0.031; (e) after 4.50 × 108 collisions, τc

∼= 0.52, νfiv = 0.018; and (f) after 8.00 × 108 collisions, τc
∼= 0.89, νfiv = 0. Sphere

diameters are scaled for visualization purposes: in a 2:5 ratio for fivefold sites in panels (a), (b), (c), and (d), and in a 1:5 ratio for fcc- and
hcp-like sites in panel (e). Image created with the VMD software [32].

of density. An “incubation” period is initially observed where
fivefolds and ordered sites coexist, and their populations either
remain constant or increase slightly. This very short (compared
to the time required for the ordering transition) period is
followed by a continuous decrease in the number of fivefolds
and a parallel increase of ordered sites. In early stages, crystal
nuclei consist of a few sites (precritical clusters) and remain
isolated, surrounded by fivefolds [Fig. 1(a)]. An intriguing
feature of these incipient crystal clusters is their tendency to
adopt highly nonspherical shapes, reminiscent of elongated
ellipsoids [Fig. 1(b)]. This highly anisotropic growth can be
traced back to a tendency of ordered clusters to avoid proximity
with existing fivefold sites [Figs. 1(a) and 1(b)]. This avoidance
stems from the geometric frustration to crystallization due
to fivefold local symmetry and is responsible for the highly
anisotropic shapes of precritical and critical crystal nuclei. As
ordered clusters progressively grow in size [Figs. 1(c) and
1(d)], fivefolds become increasingly unstable in spite of their
symmetry being preferred at a local level. As a result, fivefold
population declines sharply. In some cases, a small number
of the remaining fivefold sites continue to hinder crystal
growth by adopting linear arrangements [Fig. 1(e)]. At long
simulation times, the highly ordered final states display typical
self-assembled crystal morphologies. In the final configuration
in Fig. 1, no fivefolds exist, and the crystal morphology
corresponds to alternating stack-faulted layers of predominant
fcc character with a single stacking direction.

The systems considered here crystallize as stacks of close-
packed layers, whose proper symmetry is described by the

layer group P (6/m) mm. The stacking is, however, random,
and cannot be described in the usual Ramsdell notation. Thus,
although the immediate environment of a given site has a
definite cubic or hexagonal character, the complete structure
has a lower, trigonal symmetry [24]. The appearance of such
structures is in agreement with past experiments [15,25,26] and
simulations [7,13,19]. Given the minute entropic advantage of
strictly hcp or fcc structures with respect to such randomly
alternating structures in athermal systems [27,28] the observed
abundance of random stackings nicely illustrates Ostwald’s
rule of stages, according to which metastable intermediate
phases may hinder the attainment of the thermodynamically
stable phase [29].

In some samples, during crystallization fivefold sites form
striking patterns consisting of intersecting linear aggregates
(Fig. 2). These alignments of fivefolds remain stable for
extended periods of time, acting as particularly effective
inhibitors of crystallization. Structures containing such well-
organized linear aggregates do not reach high crystallinity
(τc � 0.6). In parallel, these fivefold assemblies do not
disappear throughout the entire, extremely long simulations
considered here.

In order to characterize crystallization kinetics, we have
analyzed the time required for the fraction of fivefolds to
decrease to half its maximum value (one half-life tfiv

1/2) and
to a quarter of its maximum value (two half-lives tfiv

1/4). These
lifetimes can be directly compared to the time required for
the attainment of the final, maximum crystallinity, tord. We
find that tfiv

1/2 and tfiv
1/4 are significantly shorter than tord in all
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FIG. 2. (Color online) Same as in Fig. 1
but for a sample at 0.60 after 9.20 × 108 col-
lisions, τc

∼= 0.56, νfiv = 0.033. Sites with five-
fold symmetry have formed linear aggregates,
significantly prolonging their half life and con-
sequently delaying the phase transition to a
single ordered morphology. Fivefold aggregates
remained stable for the whole simulation time,
which exceeded by one order of magnitude
the time required for the ordering transition in
all other samples at the same packing density.
Sphere diameters of fcc- and hcp-like sites are
scaled in a 1:5 ratio for visualization purposes.

systems considered here. Remarkably, even though tord and
tfiv
1/2 (or tfiv

1/4) are determined in completely independent ways, a
strong correlation exists between fivefold half-life and the time
required for crystal formation (Fig. 3). Another striking feature
is that the relationship between tord, tfiv

1/2, and tfiv
1/4 is valid over

the entire range of packing densities that we have examined,
independently of system size. These results provide further
evidence that the local symmetry of fivefold sites frustrates
hard-sphere crystallization.

FIG. 3. (Color online) Logarithm of the time required for the
establishment of crystal morphology (tord) versus logarithm of two
half lives (tfiv

1/4) of sites with fivefold symmetry from systems with
1200 and 3000 spheres. Also shown is a line as obtained from best fit
over all simulation data with rfit being the corresponding correlation
coefficient.

The presence of fivefolds, even at small concentrations, in
the final, predominantly ordered state also affects the resulting
morphology and its deviation from a perfect crystal. This effect
can be explained by means of a simple geometric model:
once crystalline clusters reach their critical size, they grow
by accretion of sites from their amorphous environment. In
this growth phase, the shape of critical crystal clusters is
markedly anisotropic. Growing clusters eventually impinge on
each other and in some cases (proper alignment of the stacking
vectors) merge. Disordered (amorphous) sites become increas-
ingly confined between growing clusters. Cluster growth and
merging continue until final crystallinity is reached, at which
point only a few large and well-ordered clusters or crystallites
remain, and take up most of the volume. The system can thus
be conveniently understood as a tightly packed collection of
randomly sized, nondendritic, roughly polyhedral, crystalline
domains which are separated by amorphous regions of very
low aspect ratio, i.e., approximately two dimensional. These
amorphous regions become thinner as crystallinity increases.
Fivefold sites, if any, are confined to the boundaries between
two or more crystallite faces (Fig. 2). A more detailed analysis
of the structural characteristics of the interfaces between
the crystallites will be presented elsewhere. Additionally,
transition path sampling calculations [30] will provide more
information on the crystal nucleation along with the inhibition
effect of fivefolds.

This highly simplified model leads to a relationship between
the fraction of fivefold sites observed at a given fixed time
in a simulation, and the difference in crystallinity at that
time with respect to the maximum achievable crystallinity:
at intermediate and high levels of crystallinity, it is reasonable
to assume that the number of clusters stabilizes at a value
Ncluster, i.e., further growth in crystallinity is due to the growth
of this fixed number of clusters. If the clusters follow a random
polyhedral distribution, and occupy a total, fixed volume
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FIG. 4. (Color online) Deviation from maximum degree of
ordering (τmax

c − τc) versus fraction of sites with fivefold symmetry
in the final (ordered) state. τmax

c is defined here as the maximum value
of crystallinity, observed in present simulations, in the total absence
of fivefolds at ϕ = 0.60 and 0.61. Scattered points correspond to
simulation data. Also shown are (i) a line with a slope of 1/3 as
predicted by the random polyhedral model proposed here and (ii) a
line as obtained from best linear fit on simulation data with rfit being
the corresponding correlation coefficient.

(the volume of the simulation cell Vcell), the distribution
average of a characteristic cluster size (e.g., an average edge
length) must scale as L ∝ 3√Vcell/Ncluster. Since the amorphous
sites are confined to the regions between clusters, the fraction
of amorphous sites τmax

c − τc must scale as the distribution
average of the area of a polyhedral face, times the number of
faces (which scales as ∝Ncluster):

τmax
c − τc ∝ ( 3

√
Vcell/Ncluster)

2Ncluster ∝ N
1/3
cluster.

Since fivefolds are located at, and therefore scale with, the
number of edges in the system, and the random polyhedra obey

Euler’s relation between faces, edges, and vertices, the number
of fivefolds must then scale as Nfiv ∝ Ncluster, hence

τmax
c − τc ∝ N

1/3
fiv .

Thus, if this simplest random polyhedral model holds, the
number of fivefold sites must scale with the exponent 1/3
of the difference between maximum achievable crystallinity
and crystallinity at the given time. This simple scaling is
strongly confirmed by the results of our simulations (Fig. 4)
over the observed fivefold concentration. This also implies that
the alternative dendritic growth model [31] cannot possibly
apply, for it would predict quite a different scaling exponent,
whose value would depend on the assumed fractal dimension
of the dendritic structure. In addition, a dendritic model
would provide no natural explanation for the observed linear
arrangements of fivefold sites.

Building on the observed behavior of fivefold sites as
antagonists to crystallization, it is suggested that the in-
clusion of tailored nanoparticles that mimic the fivefold
effect could be potentially used to control the crystallization
kinetics and in general, the phase behavior of novel dense
materials.
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