Descripción
|
|
---|---|
In this paper we present two different results dealing with the number of (<=k)-facets of a set of points: 1. We give structural properties of sets in the plane that achieve the optimal lower bound 3 (k+1 chose 2) of (<=k)-edges for a fixed 0 <= k <= [n/3]- 1; and 2. we show that, for k < [n=(d+1)], the number of (<=k)-facets of a set of n points in general position in R^d is at least (d+1)(k+2 chose d), and that this bound is tight in the given range of k. | |
Internacional
|
Si |
JCR del ISI
|
No |
Título de la revista
|
European journal of combinatorics |
ISSN
|
0195-6698 |
Factor de impacto JCR
|
0 |
Información de impacto
|
|
Volumen
|
30 |
DOI
|
10.1016/j.ejc.2009.03.010 |
Número de revista
|
7 |
Desde la página
|
1568 |
Hasta la página
|
1574 |
Mes
|
OCTUBRE |
Ranking
|