Descripción
|
|
---|---|
We show the existence of sets with n points (n ? 4) for which every convex decomposition contains more than (35/32)n?(3/2) polygons,which refutes the conjecture that for every set of n points there is a convex decomposition with at most n+C polygons. For sets having exactly three extreme pointswe show that more than n+sqr(2(n ? 3))?4 polygons may be necessary to form a convex decomposition. | |
Internacional
|
Si |
JCR del ISI
|
Si |
Título de la revista
|
Graphs and Combinatorics |
ISSN
|
0911-0119 |
Factor de impacto JCR
|
|
Información de impacto
|
|
Volumen
|
29 |
DOI
|
10.1007/s00373-012-1181-z |
Número de revista
|
5 |
Desde la página
|
1347 |
Hasta la página
|
1353 |
Mes
|
SIN MES |
Ranking
|